Abstract

From a single meter that measures the entire home’s electrical demand, energy disaggregation calculates appliance-by-appliance electricity consumption. Non-intrusive load monitoring (NILM), also known as energy disaggregation, tries to decompose aggregated energy consumption data and estimate each appliance’s contribution. Recently, methodologies based on Artificial Intelligence (AI) have been proposed commonly used in these models, which can be expensive to run on a server or prohibitive when the target device has limited capabilities. AI-based models are typically computationally expensive and require a lot of storage. It is not easy to reduce the computing cost and size of a neural network without sacrificing performance. This study proposed an efficient non-parametric supervised machine learning network (ENSML) architecture with a smaller size, and a quick inference time without sacrificing performance. The proposed architecture can maximise energy disaggregation performance and predict new observations based on past ones. The results showed that employing the ENSML model considerably increased the accuracy of energy prediction in 99 percent of cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.