Abstract
Supercapacitors have received increasing interest as energy storage devices due to their rapid charge-discharge rates, high power densities, and high durability. In this work, novel conjugated microporous polymer (CMP) networks are presented for supercapacitor energy storage, namely 3D polyaminoanthraquinone (PAQ) networks synthesized via Buchwald-Hartwig coupling between 2,6-diaminoanthraquinone and aryl bromides. PAQs exhibit surface areas up to 600 m2 g-1 , good dispersibility in polar solvents, and can be processed to flexible electrodes. The PAQs exhibit a three-electrode specific capacitance of 576 F g-1 in 0.5 m H2 SO4 at a current of 1 A g-1 retaining 80-85% capacitances and nearly 100% Coulombic efficiencies (95-98%) upon 6000 cycles at a current density of 2 A g-1 . Asymmetric two-electrode supercapacitors assembled by PAQs show a capacitance of 168 F g-1 of total electrode materials, an energy density of 60 Wh kg-1 at a power density of 1300 W kg-1 , and a wide working potential window (0-1.6 V). The asymmetric supercapacitors show Coulombic efficiencies up to 97% and can retain 95.5% of initial capacitance undergo 2000 cycles. This work thus presents novel promising CMP networks for charge energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.