Abstract

Hypergraphs consist of vertices and hyperedges that can connect multiple vertices. Since hypergraphs can effectively simulate complex intergroup relationships between entities, they have a wide range of applications such as computer vision and bioinformatics. In this paper, we study the subhypergraph matching problem, which is one of the most challenging problems in the processing of the hypergraphs. We aim to extract all subhypergraph isomorphism embeddings of a query hypergraph q in a large data hypergraph D. The existing methods on subgraph matching are designed for the ordinary graphs, which typically achieve the goal by three phases, i.e., filtering candidate vertex sets, refining candidates, and then enumeration final results in some matching order. However, such a design cannot be trivially extended to efficiently handle hypergraphs due to the inherent difference between ordinary graphs and hypergraphs. This motivates us to enhance the performance by exploiting hyperedge features, such as the typical intersections and inclusion relations between hyperedges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.