Abstract

In the development of genomic biomarkers and molecular diagnostics, clinical studies using high-throughput assays such as DNA microarrays generally require enormous costs and efforts. Several efficient study designs for reducing the costs of such expensive measurements have been developed, mainly in the field of epidemiology. Under these efficient designs, expensive measurements are collected only on selected subsamples based on adequate response-selective sampling schemes, and total measurement costs are effectively reduced. In this study, we discuss the application of these effective designs to genomic analyses in cancer clinical studies, and provide relevant statistical methods such as gene selection (e.g., multiple testing based on the false discovery rate). Efficient semiparametric inference methods using auxiliary clinical information are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.