Abstract

Reduction of hexavalent uranium [U(VI)] by the photocatalytic method opens up a novel way to promote the selectivity, kinetics, and capacity during uranium removal, where organic molecules act as the sacrificial agents. However, the addition of sacrificial agents can cause a secondary environmental pollution and increase the cost. Here, a UiO-66-based photocatalyst (denoted as MnOx/NH2-UiO-66) simultaneously with efficient U(VI) confinement sites and water oxidation sites was successfully developed, achieving excellent U(VI) removal without sacrificial agents. In MnOx/NH2-UiO-66, the amino groups served as efficient U(VI) confinement sites and further decreased the U(VI) reduction potential. Besides, MnOx nanoparticles separated the photogenerated electron-hole pairs and provided water oxidation sites. The U(VI) confinement sites and water oxidation sites jointly promoted the U(VI) photoreduction performance of MnOx/NH2-UiO-66, resulting in the removal ratio of MnOx/NH2-UiO-66 for U(VI) achieving 97.8% in 2 h without hole sacrifice agents. This work not only provides an effective UiO-66-based photocatalyst but also offers a strategy for effective U(VI) photoreduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.