Abstract

Direct functionalization of alkanes by oxidation of C-H bonds to form alcohols under mild conditions is a challenge for synthetic chemistry. Most alkanes contain a large number of C-H bonds that present difficulties for selectivity, and the oxidants employed often result in overoxidation. Here we describe a divanadium-substituted phosphotungstate that catalyses the stereo- and regioselective hydroxylation of alkanes with hydrogen peroxide as the sole oxidant. Both cyclic and acyclic alkanes were oxidized to form alcohols with greater than 96% selectivity. The bulky polyoxometalate framework of the catalyst results in an unusual selectivity that can lead to the oxidation of secondary rather than the weaker tertiary C-H bonds. The catalyst also avoids wasteful decomposition of the stoichiometric oxidant, which can result in the production of hydroxyl radicals and lead to non-selective oxidation and overoxidation of the desired products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.