Abstract

Power consumption is one of the major issues in System-on-Chip (SoC) design with advanced semiconductor technologies for low power applications such as mobile phones. Recently, banking several 1-bit flip-flops has been proposed as a solution to reduce the power consumption in clock networks. For this purpose, to build an accurate power model for multi-bit flip-flop banks is required. However, it is an excessively time-consuming and sophisticated work due to a high number of pins. Therefore, we first propose a simplified power characterization method to reduce characterization time. Then an efficient power modeling is introduced to create an accurate state-dependent power model for multi-bit flip-flop banks. Experimental results show that the proposed characterization method allows to linearly increase CPU time with 1.3X per bit comparing with exponentially increasing CPU time by the traditional characterization method. In addition, the proposed power modeling provides an average error of 6% compared to SPICE simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.