Abstract

Abstract A digital twin for geometry assurance contains a set of analyses that are performed to steer the real production for securing the geometry of the final assembly. In sheet metal assemblies, spot welding is performed to join the parts together. The sequence of the welding has a considerable influence on the geometrical outcome of the final assembly. In industry, the sequence of welding to secure the geometry is mainly derived by tacit manufacturing knowledge. Including such knowledge to mimic the production process requires extensive knowledge management, and the result might be just a good enough solution. Theoretically, spot welding sequence optimization for the optimal geometrical quality is among NP-hard combinatorial problems. In a geometry assurance digital twin, where assembly parameters are selected for the individual assemblies, time constraints define the quality of the optimal sequence. In this paper, an efficient method for spot welding sequence optimization with regards to the geometrical quality is introduced. The results indicate that the proposed method reduces 60–80% of the time for the sequencing of the spot welding process to achieve the optimal geometrical quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.