Abstract

This work proposes a heterogeneous automated frequency coordination network (HAFCN) to enhance reliability and enable dynamic spectrum allocation for unlicensed Wi-Fi devices (UWDs) within the 6 GHz band. This process relies heavily on spectrum sensing within the HAFCN. However, the widespread implementation of spectrum sensing by multiple UWDs in an automated frequency coordination (AFC) network using conventional fusion schemes poses computational challenges at the AFC provider. In response to this challenge, we present a selective soft-information (SSI) fusion scheme for the proposed HAFCN. First, we present generic mathematical expressions of false-alarm and missed detection probabilities for the HAFCN using an SSI fusion scheme. Second, a generalized AFC SSI fusion problem (GASFP) is formulated to minimize the system’s total error probability. Further, to mitigate the AFC provider’s overhead in solving the GASFP, this work presents the swift-sensing problem, determining the minimum antennas at UWD required to achieve a desired total error probability. Finally, comparative numerical results demonstrate that the HAFCN with the SSI fusion scheme shows a significant performance improvement over conventional fusion schemes in terms of the total error probability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.