Abstract

A new spectral-Galerkin approach for solving the Poisson-type equation in polar geometry is introduced and analyzed. The pole singularity is treated naturally through an appropriate variational formulation. Clustering of collocation points near the pole, a problem common to the spectral-Galerkin algorithms in the literature, is prevented through a change of variable in the radial direction. The method is very efficient and gives spectral accuracy, and can be easily adopted to solve problems in cylindrical geometries and with general boundary conditions. Boundary lifting of general inhomogeneous boundary conditions is also addressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.