Abstract

This is the second part in a series of papers on multi-step schemes for solving coupled forward backward stochastic differential equations (FBSDEs). We extend the basic idea in our former paper [W. Zhao, Y. Fu and T. Zhou, SIAM J. Sci. Comput., 36 (2014), pp. A1731-A1751] to solve high-dimensional FBSDEs, by using the spectral sparse grid approximations. The main issue for solving high dimensional FBSDEs is to build an efficient spatial discretization, and deal with the related high dimensional conditional expectations and interpolations. In this work, we propose the sparse grid spatial discretization. We use the sparse grid Gaussian-Hermite quadrature rule to approximate the conditional expectations. And for the associated high dimensional interpolations, we adopt an spectral expansion of functions in polynomial spaces with respect to the spatial variables, and use the sparse grid approximations to recover the expansion coefficients. The FFT algorithm is used to speed up the recovery procedure, and the entire algorithm admits efficient and high accurate approximations in high-dimensions, provided that the solutions are sufficiently smooth. Several numerical examples are presented to demonstrate the efficiency of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.