Abstract

A spectral shifted Legendre Gauss–Lobatto collocation method is developed and analyzed to solve numerically one-dimensional two-sided space fractional Boussinesq (SFB) equation with non-classical boundary conditions. The method depends basically on the fact that an expansion in a series of shifted Legendre polynomials $${P_{L,n}(x), \ x\in[0,L]}$$ is assumed, for the function and its space-fractional derivatives occurring in the two-sided SFB equation. The Legendre–Gauss–Lobatto quadrature rule is established to treat the non-local conservation conditions, and then the problem with its non-local conservation conditions is reduced to a system of ordinary differential equations (ODEs) in time. Thereby, the expansion coefficients are then determined by reducing the two-sided SFB with its boundary and initial conditions to a system of ODEs for these coefficients. This system may be solved numerically in a step-by-step manner by using implicit Runge–Kutta method of order four. Numerical results indicating the high accuracy and effectiveness of this algorithm are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.