Abstract
Gaussian fields (GFs) are frequently used in spatial statistics for their versatility. The associated computational cost can be a bottleneck, especially in realistic applications. It has been shown that computational efficiency can be gained by doing the computations using Gaussian Markov random fields (GMRFs) as the GFs can be seen as weak solutions to corresponding stochastic partial differential equations (SPDEs) using piecewise linear finite elements. We introduce a new class of representations of GFs with bivariate splines instead of finite elements. This allows an easier implementation of piecewise polynomial representations of various degrees. It leads to GMRFs that can be inferred efficiently and can be easily extended to nonstationary fields. The solutions approximated with higher order bivariate splines converge faster, hence the computational cost can be alleviated. Numerical simulations using both real and simulated data also demonstrate that our framework increases the flexibility and efficiency. Supplementary materials are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.