Abstract

Polymer composites of self-reinforced fibres and a matrix composed of the same plastic material display an outstanding mechanical performance and an excellent recyclability. Hence, these materials are suitable for many practical applications. One disadvantage, however, is the narrow processing window that is caused by a strong pressure and temperature sensitivity of the self-reinforced fibres. In this paper, an approach to efficiently model the spatial and temporal temperature evolution is presented. Advanced empirical modelling techniques from the design and analysis of computer experiments are fitted to experimental data. It is shown that only a small set of experiments has to be performed in order to predict the temperatures with the desired accuracy. The required enhancements with respect to the design of experiments and the empirical models are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.