Abstract

In this paper we examine the possibilities of using voxel representations as a generic way for expressing complex and feature-rich geometry on current and future GPUs. We present in detail a compact data structure for storing voxels and an efficient algorithm for performing ray casts using this structure.We augment the voxel data with novel contour information that increases geometric resolution, allows more compact encoding of smooth surfaces, and accelerates ray casts. We also employ a novel normal compression format for storing high-precision object-space normals. Finally, we present a variable-radius post-process filtering technique for smoothing out blockiness caused by discrete sampling of shading attributes.Our benchmarks show that our voxel representation is competitive with triangle-based representations in terms of ray casting performance, while allowing tremendously greater geometric detail and unique shading information for every voxel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.