Abstract

Most tensor problems are NP-hard, and low-rank tensor completion is much more difficult than low-rank matrix completion. In this paper, we propose a time and space-efficient low-rank tensor completion algorithm by using the scaled latent nuclear norm for regularization and the Frank-Wolfe (FW) algorithm for optimization. We show that all the steps can be performed efficiently. In particular,FW's linear subproblem has a closed-form solution which can be obtained from rank-one SVD. By utilizing sparsity of the observed tensor,we only need to maintain sparse tensors and a set of small basis matrices. Experimental results show that the proposed algorithm is more accurate, much faster and more scalable than the state-of-the-art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.