Abstract

An efficient approach based on the synthesis of phytostanyl esters with an acid-surfactant-combined catalyst in a solvent-free system was developed. The effect of catalyst dose, substrate molar ratio, reaction temperature, and acyl donor was considered. The reaction conditions were further optimized by response surface methodology, and a high yield of phytostanyl laurate (>92%) was obtained under optimum conditions: 3.17:1 molar ratio of lauric acid to plant stanols, 4.01% catalyst dose (w/w), 119 °C, and 4.1 h. FT-IR, MS, and NMR were adopted to confirm the chemical structure of phytostanyl laurate. Meanwhile, the physiochemical properties of different phytostanyl esters were investigated. Compared with phytostanols, the prepared phytostanyl esters had much lower melting temperature and higher oil solubility. There was no obvious difference in melting and solidification properties between sunflower oil with phytostanyl laurate (<5%) or oleate (<10%) and the original sunflower oil, suggesting that the esterification of phytostanols greatly facilitated their corporation into oil-based foods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call