Abstract

Efficient solution-processed electrophosphorescent devices using two blue-emitting ionic iridium complexes (complex 1 and complex 2) were fabricated, with poly( N-vinylcarbazole) (PVK):1,3-bis(5-(4-tert-butylphenyl)-1,3,4-oxadiazol-2-yl)benzene (OXD-7) as the host and Cs 2CO 3/Al as the cathode. Using complex 1 as the dopant, we obtained efficient blue-green electrophosphorescence from single-layer devices with a maximum efficiency of 12.2 cd A −1, a maximum brightness of 12,600 cd m −2 and CIE (Commission Internationale de l’Éclairage) coordinates of (0.19, 0.45). And the maximum efficiency of the device based on complex 1 can be further improved to 20.2 cd A −1, when a thin 1,3,5-tris(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene (TPBI) layer was inserted between the light-emitting layer and the cathode. Using complex 2 as the dopant, we obtained deep-blue electrophosphorescence with the emission peak at 458 nm and CIE coordinates of (0.16, 0.22). Our work suggests that ionic iridium complexes are promising phosphors for obtaining efficient electrophosphorescence in the blue region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.