Abstract

One of the problems of the finite element and the finite difference method is that as the dimension of the problem increases, the condition number of the system matrix increases as /spl Theta/(1/h/sup 2/) (of the order of h/sup 2/, where h is the subsection length). Through the use of a suitable basis function tailored for rectangular regions, it is shown that the growth of the condition number can be checked while still retaining the sparsity of the system matrix. This is achieved through a proper choice of entire domain basis functions. Numerical examples have been presented for efficient solution of waveguide problems with rectangular regions utilizing this approach.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.