Abstract

Structural estimation of macroeconomic models and new HANK-type models with extremely high dimensionality require fast and robust methods to efficiently deal with occasionally binding constraints (OBCs). This paper proposes a novel algorithm that solves for the perfect foresight path of piecewise-linear dynamic models. In terms of computation speed, the method outperforms its competitors by more than three orders of magnitude. I develop a closed-form solution for the full trajectory given the expected duration of the constraint. This allows to quickly iterate and validate guesses on the expected duration until a perfect-foresight equilibrium is found. A toolbox, featuring an efficient implementation, a model parser and various econometric tools, is provided in the Python programming language. Benchmarking results show that for medium-scale models with an occasionally binding interest rate lower bound, more than 150,000 periods can be simulated per second. Even simulating large HANK-type models with almost 1000 endogenous variables requires only 0.2 milliseconds per period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.