Abstract

AbstractHollow structures with an efficient light harvesting and tunable interior component offer great advantages for constructing a Z‐scheme system. Controlled design of hollow cobalt sulfide (Co9S8) cubes embedded with cadmium sulfide quantum dots (QDs) is described, using hollow Co(OH)2 as the template and a one‐pot hydrothermal strategy. The hollow CdS/Co9S8 cubes utilize multiple reflections of light in the cubic structure to achieve enhanced photocatalytic activity. Importantly, the photoexcited charge carriers can be effectively separated by the construction of a redox‐mediator‐free Z‐scheme system. The hydrogen evolution rate over hollow CdS/Co9S8 is 134 and 9.1 times higher than that of pure hollow Co9S8 and CdS QDs under simulated solar light irradiation, respectively. Moreover, this is the first report describing construction of a hollow Co9S8 based Z‐scheme system for photocatalytic water splitting, which gives full play to the advantages of light‐harvesting and charges separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.