Abstract

AbstractSelenium (Se), with its high specific volume capacity and high electronic and superior kinetics, is considered a promising electrode material with promising applications. However, the solvation and shuttle effects of polyselenides hinder their further application. The selenium/nitrogen‐doped hollow porous carbon spheres (Se/NHPCs) are obtained using the sacrificial template and in situ gas‐phase selenization methods. The Se species are doped into carbon matrixes in an adjustable amount to form Se‐C(N) bonds during this process. Density functional theory calculations show that the Se‐C(N) bond enhances the charge transfer between Na2Se and carbon matrix and binding energy, which improves rate performance and cycling stability. As expected, Se/NHPCs electrode exhibit high reversible capacity (480 mAh g–1 at 0.5 A g–1 after 200 cycles) and rate performance (311 mAh g–1 at 5 A g–1) as the anode for sodium‐ion batteries. A series of ex situ characterization results show that Cu2Se produced by copper current collector induction is effective in the adsorption of polyselenides while enhancing the electrode conductivity. Since the lattice structures of Cu2Se and Na2Se are similar, this displacement reaction that does not involve lattice reconfiguration provides an effective strategy for the preparation of high‐performance and low‐cost electrode materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call