Abstract

To solve the insufficient availability of mogrol, an 11α-hydroxy aglycone of mogrosides in Siraitia grosvenorii, snailase was employed as the enzyme to completely deglycosylate LHG extract containing 50% mogroside V. Other commonly used glycosidases performed less efficiently. Response surface methodology was conducted to optimize the productivity of mogrol, which peaked at 74.7% in an aqueous reaction. In view of the differences in water-solubility between mogrol and LHG extract, we employed an aqueous-organic system for the snailase-catalyzed reaction. Of five tested organic solvents, toluene performed best and was relatively well tolerated by snailase. After optimization, biphasic medium containing 30% toluene (v/v) could produce a high-quality mogrol (98.1% purity) at a 0.5 L scale with a production rate of 93.2% within 20 h. This toluene-aqueous biphasic system would not only provide sufficient mogrol to construct future synthetic biology systems for the preparation of mogrosides, but also facilitate the development of mogrol-based medicines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call