Abstract

A class of two-step (hybrid) methods is considered for solving pure oscillation second order initial value problems. The nonlinear system, which results on applying methods of this type to a nonlinear differential system, may be solved using a modified Newton iteration scheme. From this class the author has derived methods which are fourth order accurate,P-stable, require only two (new) function evaluations per iteration and have a true real perfect square iteration matrix. Now, we propose an extension to sixth order,P-stable methods which require only three (new) function evaluations per iteration and for which the iteration matrix is a true realperfect cube. This implies that at most one real matrix must be factorised at each step. These methods have been implemented in a new variable step, local error controlling code.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call