Abstract

Spinel type Mn3O4 oxide ceramics possess intriguing magnetodielectric properties, but traditional processing routes can be frustrated by limited high temperature phase stability. Using a low temperature (≤400 °C) electric field assisted processing route (Cool-SPS), a highly cohesive Mn3O4 ceramic is achieved. Reactive manganese oxide-hydroxide precursor powder is converted into the targeted Mn3O4 with a single step process under strategically selected conditions. Detailed X-ray diffraction studies, including variable temperature and atmosphere measurements, plus in-situ monitoring of processing parameters, have been combined to map and optimize SPS processing parameters. The microstructure evolution from precursor to ceramic was examined by electron microscopy, while extensive magnetic and dielectric measurements were performed to study the complex physical behavior of Mn3O4 at low temperature (<43 K). The efficacy of this Cool-SPS processing approach for Mn3O4 is demonstrated by the observed ceramic properties, including a hysteretic magnetic-field dependent dielectric response which supports the existence of a magnetoelectric coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.