Abstract

The FP-growth algorithm using the FP-tree has been widely studied for frequent pattern mining because it can dramatically improve performance compared to the candidate generation-and-test paradigm of Apriori. However, it still requires two database scans, which are not consistent with efficient data stream processing. In this paper, we present a novel tree structure, called CP-tree (compact pattern tree), that captures database information with one scan (insertion phase) and provides the same mining performance as the FP-growth method (restructuring phase). The CP-tree introduces the concept of dynamic tree restructuring to produce a highly compact frequency-descending tree structure at runtime. An efficient tree restructuring method, called the branch sorting method, that restructures a prefix-tree branch-by-branch, is also proposed in this paper. Moreover, the CP-tree provides full functionality for interactive and incremental mining. Extensive experimental results show that the CP-tree is efficient for frequent pattern mining, interactive, and incremental mining with a single database scan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.