Abstract
We explore in this paper efficient algorithmic solutions to single image super-resolution (SR). We propose the GESR, namely Graph Embedding Super-Resolution, to super-resolve a high-resolution (HR) image from a single low-resolution (LR) observation. The basic idea of GESR is to learn a projection matrix mapping the LR image patch to the HR image patch space while preserving the intrinsic geometrical structure of original HR image patch manifold. While GESR resembles other manifold learning-based SR methods in persevering the local geometric structure of HR and LR image patch manifold, the innovation of GESR lies in that it preserves the intrinsic geometrical structure of original HR image patch manifold rather than LR image patch manifold, which may be contaminated because of image degeneration (e.g., blurring, down-sampling and noise). Experiments on benchmark test images show that GESR can achieve very competitive performance as Neighbor Embedding based SR (NESR) and Sparse representation based SR (SSR). Beyond subjective and objective evaluation, all experiments show that GESR is much faster than both NESR and SSR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.