Abstract

An amphiphilic hyaluronic acid (HA)-g-all-trans retinoid acid (HRA) conjugate was successfully developed as a tumor-targeting nanocarrier for potentially synergistic combination chemotherapy of all-trans retinoid acid (ATRA) and paclitaxel (PTX). The HRA conjugate was synthesized by an imine reaction between HA-COOH and ATRA-NH2. PTX-loaded HRA nanoparticles possessed a high loading capacity, nanoscale particle sizes, and good biocompatible characteristics. Cell viability assays indicated that PTX-loaded HRA nanoparticles exhibited concentration- and time-dependent cytotoxicity. Moreover, they displayed obvious superiority in inducing the apoptosis of tumor cells. Cellular uptake analysis suggested that HRA nanoparticles could be efficiently taken up by cells via endocytic pathway and transport into the nucleus, contributing to HA receptor-mediated endocytosis and ATRA-induced nuclear translocation, respectively. Moreover, in vivo imaging analysis indicated that the accumulation of DiR-loaded HRA nanoparticles in tumor was increased obviously after intravenous administration as compared to free DiR solution, which confirmed that the HRA nanoparticles could assist the drugs targeting to the tumor. Furthermore, PTX-loaded HRA nanoparticles exhibited greater tumor growth inhibition effect in vivo with reducing the toxicity. Therefore, HRA nanoparticles can be considered as a promising targeted codelivery system for combination cancer chemotherapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.