Abstract

Microwave imaging has been widely used in the prediction and tracking of hurricanes, typhoons, and tropical storms. Due to the limitations of sensors, the acquired remote sensing data are usually blurry and have relatively low resolution, which calls for the development of fast algorithms for deblurring and enhancing the resolution. We propose an efficient algorithm for simultaneous image deconvolution and upsampling for low-resolution microwave hurricane data. Our model involves convolution, downsampling, and the total variation regularization. After reformulating the model, we are able to apply the alternating direction method of multi- pliers and obtain three subproblems, each of which has a closed-form solution. We also extend the framework to the multichannel case with the multichannel total variation regularization. A variety of numerical experiments on synthetic and real Advanced Microwave Sounding Unit and Microwave Humidity Sounder data were conducted. The results demonstrate the out- standing performance of the proposed method. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) (DOI: 10.1117/1.JRS.9.095035)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.