Abstract

AbstractThis work demonstrates an improved method to simulate long-distance femtosecond pulse propagation in highcontrast nanowaveguides. Different from typical beam propagation methods, the foundational tool here is capable of simulating strong spatiotemporal waveform reshaping and extreme spectral dynamics. Meanwhile, the ability to fully capture effects due to index contrast in the transverse direction is retained, without requiring a decomposition of the electric field in terms of waveguide modes. These simulations can be computationally expensive, however, so cost is reduced in the improved method by considering only the waveguide core. Fields in the cladding are then properly accounted for through a boundary condition suitable for the case of total internal reflection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.