Abstract

We study continuous-time multi-agent models, where agents interact according to a network topology. At any point in time, each agent occupies a specific local node state. Agents change their state at random through interactions with neighboring agents. The time until a transition happens can follow an arbitrary probability density. Stochastic (Monte-Carlo) simulations are often the preferred-sometimes the only feasible-approach to study the complex emerging dynamical patterns of such systems. However, each simulation run comes with high computational costs mostly due to updating the instantaneous rates of interconnected agents after each transition. This work proposes a stochastic rejection-based, event-driven simulation algorithm that scales extremely well with the size and connectivity of the underlying contact network and produces statistically correct samples. We demonstrate the effectiveness of our method on different information spreading models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.