Abstract
We propose a novel Monte Carlo simulation method for two-dimensional stochastic differential equation (SDE) systems based on approximation through continuous-time Markov chains (CTMCs). Specifically, we propose an efficient simulation framework for asset prices under general stochastic local volatility (SLV) models arising in finance, which includes the Heston and the stochastic alpha beta rho (SABR) models as special cases. Our simulation algorithm is constructed based on approximating the latent stochastic variance process by a CTMC. Compared with time-discretization schemes, our method exhibits several advantages, including flexible boundary condition treatment, weak continuity conditions imposed on coefficients, and a second order convergence rate in the spatial grids of the approximating CTMC under suitable regularity conditions. Replacing the stochastic variance process with a discrete-state approximation greatly simplifies the direct sampling of the integrated variance, thus enabling a highly efficient simulation scheme. Extensive numerical examples illustrate the accuracy and efficiency of our estimator, which outperforms both biased and unbiased simulation estimators in the literature in terms of root mean squared error (RMSE) and computational time. This paper is focused primarily on the simulation of SDEs which arise in finance, but this new simulation approach has potential for applications in other contextual areas in operations research, such as queuing theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.