Abstract

We have developed an efficient numerical method to investigate light scattering from plasmonic nanospheres on a substrate covered by a shell, based on the half-space Green’s function approach. We use this method to study optical scattering from DNA molecules attached to metallic nanoparticles on a substrate and compare with the experiment. We obtain fairly good agreement between theoretical predictions and the measured ellipsometric spectra. The metallic nanoparticles were used to detect the binding with DNA molecules in a microfluidic setup via spectroscopic ellipsometry (SE), and a detectable change in ellipsometric spectra was found when DNA molecules are captured on a Au nanoparticle surface. Our theoretical simulation indicates that the coverage of the Au nanosphere by a submonolayer of DNA molecules, which is modeled by a thin layer of dielectric material, can indeed lead to a small but detectable change in ellipsometric spectra. Our studies demonstrated the ultrasensitive capability of SE for sensing the submonolayer coverage of DNA molecules on Au nanospheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.