Abstract

The contribution of this paper is to introduce change of measure based techniques for the rare-event analysis of heavy-tailed random walks. Our changes of measures are parameterized by a family of distributions admitting a mixture form. We exploit our methodology to achieve two types of results. First, we construct Monte Carlo estimators that are strongly efficient (i.e. have bounded relative mean squared error as the event of interest becomes rare). These estimators are used to estimate both rare-event probabilities of interest and associated conditional expectations. We emphasize that our techniques allow us to control the expected termination time of the Monte Carlo algorithm even if the conditional expected stopping time (under the original distribution) given the event of interest is infinity–a situation that sometimes occurs in heavy-tailed settings. Second, the mixture family serves as a good Markovian approximation (in total variation) of the conditional distribution of the whole process given the rare event of interest. The convenient form of the mixture family allows us to obtain functional conditional central limit theorems that extend classical results in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.