Abstract

Polymyxins are antibacterial polypeptides used as "last resort"therapy option for multidrug-resistant Gram-negative bacteria. The expansion of polymyxin-resistant infections has inspired development of novel polymyxin derivatives, and deacylation is one of the critical steps in generating those antibiotics. Deacylase from Actinoplanes utahensis hydrolyze the acyl moieties of echinocandins, and also efficiently deacylates daptomycin, ramoplanin and other important antibiotics. Here, deacylase was studied considering its potential usefulness in deacylating polymyxin B1. All the six recombinant strains containing the deacylase gene catalyzed hydrolysis of polymyxin B1, yielding cyclic heptapeptides. The efficiency of recombinant S. albus (SAL701) was higher than that of the others, and deacylation was the most efficient at 40°C in 0.2M Tris buffer (pH 8.0) with 0.2M Mg2+. The optimal substrate concentration of SAL701 was increased from 2.0 to 6.0g/L. SAL701 was highly thermostable, showing no loss of activity at 50°C for 12h, and the mycelia could be recycled at least three times without loss of catalytic activity. SAL701 could not deacylate β-lactam substrate such as penicillin G and cephalosporin C. Deacylase catalyzes the amide bond 1 closest to the nucleus of polymyxin B1 rather than the other bond, suggesting that it has high catalytic site specificity. Homology modeling and the docking results implied that Thr190 in deacylase could facilitate hydrolysis with high regioselectivity. These results show that SAL701 is effective in increasing the cyclic heptapeptide moiety of polymyxin B1. These properties of the biocatalyst may enable its development in the industrial production of polymyxins antibiotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call