Abstract

Short-wave infrared (SWIR) light emission is important for a diverse range of modern applications, such as eye-safe depth sensing, light detection and ranging (LiDAR), facial recognition, eye tracking, optical communication, and health-monitoring technologies. However, there are a very limited number of known semiconductors that can emit efficiently in the SWIR spectral range. Presently, SWIR light-emitting diodes (LEDs) based on colloidal quantum dots (CQD) are dominated by lead chalcogenide systems, despite the presence of heavy metal and modest efficiencies. Here, a highly efficient SWIR LED based on heavy-metal-free indium arsenide (InAs) core-shell CQDs is presented. In the LED design, the implementation of an otherwise hole-transporting poly(vinylcarbazole) (PVK) layer on the electron-injecting side of the device stack leads to a surprising enhancement in device performance, giving remarkably high external quantum efficiencies (EQEs) of 13.3% at 1006 nm. Single-carrier device and optical investigations reveal the origins of enhancement to be the electronic decoupling of the CQD layer with the electron-injecting zinc oxide (ZnO) layer, which mitigates luminescence quenching and improves charge balance. This work marks one of the highest efficiencies reported for heavy-metal-free solution-processed LEDs in the SWIR spectral region, and can find significant applications in emerging consumer electronic technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.