Abstract

Anura (frogs and toads) constitute over 88% of living amphibian diversity but many important questions about their phylogeny and evolution remain unresolved. For this study, we developed an efficient method for sequencing anuran mitochondrial DNAs (mtDNAs) by amplifying the mitochondrial genome in 12 overlapping fragments using frog-specific universal primer sets. Based on this method, we generated 47 nearly complete, new anuran mitochondrial genomes and discovered nine novel gene arrangements. By combining the new data and published anuran mitochondrial genomes, we assembled a large mitogenomic data set (11,007 nt) including 90 frog species, representing 39 of 53 recognized anuran families, to investigate their phylogenetic relationships and evolutionary history. The resulting tree strongly supported a paraphyletic arrangement of archaeobatrachian (=nonneobatrachian) frogs, with Leiopelmatoidea branching first, followed by Discoglossoidea, Pipoidea, and Pelobatoidea. Within Neobatrachia, the South African Heleophrynidae is the sister-taxon to all other neobatrachian frogs and the Seychelles-endemic Sooglossidae is recovered as the sister-taxon to Ranoidea. These phylogenetic relationships agree with many nuclear gene studies. The chronogram derived from two Bayesian relaxed clock methods (MultiDivTime and BEAST) suggests that modern frogs (Anura) originated in the early Triassic about 244 Ma and the appearance of Neobatrachia took place in the late Jurassic about 163 Ma. The initial diversifications of two species-rich superfamilies Hyloidea and Ranoidea commenced 110 and 133 Ma, respectively. These times are older than some other estimates by approximately 30-40 My. Compared with nuclear data, mtDNA produces compatible time estimates for deep nodes (>150 Ma), but apparently older estimates for more shallow nodes. Our study shows that, although it evolves relatively rapidly and behaves much as a single locus, mtDNA performs well for both phylogenetic and divergence time inferences and will provide important reference hypotheses for the phylogeny and evolution of frogs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call