Abstract

Sensor location estimation is important for many location-based systems in ubiquitous environments. Sensor location is usually determined using a global positioning system. For indoor localization, methods that use the received signal strength (RSS) of wireless sensors are used instead of a global positioning system because of the lack of availability of a global positioning system for indoor environments. However, there is a problem in determining sensor locations from the RSS: radio signal interference occurs because of the presence of indoor obstacles. To avoid this problem, we propose a novel localization method that uses environmental data recorded at each sensor location and a data classification technique to identify the location of sensor nodes. In this study, we used a wireless sensor node to collect data on various environmental parameters—temperature, humidity, sound, and light. We then extracted some features from the collected data and trained the location data classifier to identify the location of the wireless sensor node.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.