Abstract

Aquatic selenium (Se) oxyanions have profound ecosystem and human health impacts, necessitating their conversion and immobilization into elemental Se(0) to mitigate the aquatic Se pollution. While thermodynamically favorable, this transformation encounters kinetic limitations, especially for selenate (SeO42−) or Se(VI). To lower the activation barrier, we investigated the electrocatalytic Se(VI) transformation using five affordable catalysts on graphite cathodes, including TiO2, underpotentially deposited Cu (UPD Cu), underpotentially deposited Cd (UPD Cd), Co, and CuFe. Among these five catalysts, we identified characteristic Se(VI) reduction peaks for TiO2 through cyclic voltammetry. Other catalysts removed less than 5% of 1-mM Se(VI) in 24-h chronoamperometry tests while leaching ppm-level metal cations in the treated water. In contrast, TiO2 as the electrocatalyst could remove more than 80% of 1-mM Se(VI) with negligible catalyst dissolution. Mechanistic investigations revealed a six-electron Se(VI)/Se(0) reduction pathway at -0.30 V (vs. Ag/AgCl), resulting in red Se(0) deposits on the TiO2-coated graphite cathode. Further potential decrease to more negative than -0.45 V led to Se(-II) formation, triggering cathodic Se(0) dissolution and surface regeneration. Electrochemical impedance spectroscopy indicated that Se(VI) reduction was optimal with a moderate TiO2 loading of 0.55 mg cm−2 and acidic environments (pH=1.0∼2.5), achieving an optimized removal of 88.7 ± 2.3% under -0.70 V and an energy input of 3.6 kWh kg−1 Se. These findings lay the foundation for efficient selenate removal from impaired waters. Future efforts should evaluate catalyst performance over time and refine electrode and reactor designs to improve efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.