Abstract
Secure subset problem is important in secure multiparty computation, which is a vital field in cryptography. Most of the existing protocols for this problem can only keep the elements of one set private, while leaking the elements of the other set. In other words, they cannot solve the secure subset problem perfectly. While a few studies have addressed actual secure subsets, these protocols were mainly based on the oblivious polynomial evaluations with inefficient computation. In this study, we first design an efficient secure subset protocol for sets whose elements are drawn from a known set based on a new encoding method and homomorphic encryption scheme. If the elements of the sets are taken from a large domain, the existing protocol is inefficient. Using the Bloom filter and homomorphic encryption scheme, we further present an efficient protocol with linear computational complexity in the cardinality of the large set, and this is considered to be practical for inputs consisting of a large number of data. However, the second protocol that we design may yield a false positive. This probability can be rapidly decreased by reexecuting the protocol with different hash functions. Furthermore, we present the experimental performance analyses of these protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.