Abstract

AbstractThe demonstration of an efficient construction proven secure in a formal model that captures all intuitive security properties of a certain primitive is an ultimate goal in cryptographic design. This work offers the above for the case of a group signature scheme (with the traditional notion of dynamically joining users and untrusted join manager). To this end we adapt a formal model for group signatures capturing the state-of-the-art requirements in the area and we construct an efficient scheme and prove its security. Our construction is based on the scheme of Ateniese et al., which is modified appropriately so that it becomes provably secure. This task required designing novel cryptographic constructs as well as investigating some basic number-theoretic techniques for arguing security over the group of quadratic residues modulo a composite when its factorization is known. Along the way, we discover that in the basic construction, anonymity does not depend on factoring-based assumptions, which, in turn, allows the natural separation of user join management and anonymity revocation authorities. Anonymity can, in turn, be shown even against an adversary controlling the join manager.KeywordsGroup SignatureSignature SchemeGroup ManagerSecurity PropertySecurity ParameterThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.