Abstract

Phospholipase D (PLD) is an essential biocatalyst for the biological production of phosphatidylserine and phospholipid modification. However, the efficient heterologous expression of PLD is limited by its cell toxicity. In this study, a PLD was secretory expressed efficiently in Bacillus subtilis with an activity around 100 U/mL. A secretory expression system containing the signal peptide SPEstA and the dual-promoter PHpaII-SrfA was established, and the extracellular PLD activity further reached 119.22 U/mL through scale-up fermentation, 191.30-fold higher than that of the control. Under optimum reaction conditions, a 61.61% conversion ratio and 21.07 g/L of phosphatidylserine production were achieved. Finally, the synthesis system of PL derivates was established, which could efficiently synthesis novel PL derivates. The results highlight that the secretory expression system constructed in this study provides a promising PLD producing strain in industrial application, and laid the foundation for the biosynthesis of phosphatidylserine and other PL derivates. As far as we know, this work reports the highest level of extracellular PLD expression to date and the enzymatic production of several PL derivates for the first time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call