Abstract

The use of host to secrete several hemicellulase is a cost-effective way for hemicellulose degradation. In this study, the xylose utilization gene xylAB of Escherichia coli BL21 was knocked out, and the xylanase (N20Xyl), β-xylosidase (Xys), and feruloyl esterase (FaeLam) were co-expressed in this strain. By measuring the content of reducing sugars generated by enzymatic hydrolysis of wheat bran in the fermentation supernatant, the order of the three enzymes was screened to obtain the optimal recombinant strain of E. coli BL21/∆xylAB/pDIII-2. Subsequently, fermentation conditions including culture medium, inducer concentration, induction timing, metal ions, and glycine concentration were optimized. Then, different concentrations of wheat bran and xylan were added to the fermentation medium for degradation. The results showed that the extracellular reducing sugars content reached the highest value of 33.70 ± 0.46 g/L when 50 g/L xylan was added. Besides, the scavenging rates of hydroxyl radical by the fermentation supernatant was 81.0 ± 1.41 %, and the total antioxidant capacity reached 2.289 ± 0.55. Furthermore, it showed the growth promotion effect on different lactic acid bacteria. These results provided a basis for constructing E. coli strain to efficiently degrade hemicellulose, and the strain obtained has great potential application to transform hemicellulose into fermentable carbon source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call