Abstract
This paper focuses on high efficiency secret key generation mechanism of physical-layer communication over fading channels in ubiquitous wireless networks. The secret key rate via traditional physical-layer approach could be limited when the wireless propagation channels connecting two sensors change slowly. To generate a high-rate secret key and improve the communication efficiency over quasi-static block fading channels, a novel multi-randomness device-to-device secret key generation strategy and a cooperative communication mechanism aided by relay nodes are proposed. In the proposed schemes, the legitimate members to send random signals rotationally in every coherent time T are set; thus, two legitimate ubiquitous wireless network members, Alice and Bob, can obtain the potential correlated information by exploiting the randomness and the reciprocity of the wireless propagation channels. Considering the reciprocity of wireless channels is variable while the forward channel gain and backward channel gain are correlated in coherent time, a modified secret key generation scheme is proposed via layered coding with theoretical secret key rates derived. The simulation results show that the proposed scheme outperforms traditional approaches with favourable application prospects in ubiquitous wireless communications networks and internet of things.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.