Abstract

Lithium niobate (LN) has been widely used for second-harmonic generation (SHG) from bulk crystals. Recent studies have reported improved SHG efficiency in LN micro-ring resonators and hybrid waveguiding structures, as well as in LN nanostructures supporting anapole modes and plasmon-assisted dipole resonances. Here we numerically demonstrate that high Q-factor resonances associated with symmetry-protected bound states in the continuum can lead to highly efficient frequency doubling in LN metasurfaces. Simulations show that the radiative Q-factor and on-resonance field enhancement factor observed in the metasurface are closely dependent on the asymmetric parameter α of the system. Furthermore, high Q-factor resonances boost the SH conversion process in the LN nanostructures. In particular, for a LN metasurface with a Q-factor of ∼8×104, a 0.49% peak SH conversion efficiency is achieved at a pump intensity of 3.3kW/cm2. This suggests that such high Q-factor LN metasurfaces may be good candidates for practical blue-ultraviolet light sources. Our work provides insight into the possible implementation of metadevices based on nanoengineering of conventional nonlinear crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.