Abstract

Bulk silicon possesses no second-order susceptibility (χ(2)), inhibiting second-order nonlinear processes in the emerging silicon photonic platform. Here, we propose a method to overcome this limitation by enabling a third-order (χ(3)) nonlinear mixing scheme between optical waves and an externally applied static electric field inside a silicon waveguide. We show in theory that facilitated by a modal phase-matching scheme efficient second-harmonic generation can be realized under an applied voltage of 65 V, giving rise to an equivalent χ(2) = 4.7 pm/V. We also show that unlike the classical second-harmonic generation, the wavelengths of phase-matched pump and second-harmonic waves are pump-power dependent due to the χ (3) nature of this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.