Abstract

In our previous work we investigated the effect of the hypothetical reflecting boundary near the black hole event horizon on the waveform from extreme mass-ratio inspirals (EMRIs). Even if the reflection efficiency is not extremely high, we found that a significant modification of the waveform can be expected. Then, the question is how to implement the search for this signature in the actual data analysis of future space gravitational wave antennas, such as LISA. In this paper we propose a simple but efficient method to detect the signature of the reflecting boundary. The interesting feature of the effect of the reflecting boundary on the orbital evolution of EMRIs is that the energy and angular momentum loss rates periodically oscillate in the frequency domain. The oscillation period is corresponding to the inverse time scale for the round trip of gravitational waves between the hypothetical boundary and the angular momentum barrier. We will show that this peculiar feature allows to detect the signature of the reflecting boundary without much additional computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.