Abstract

We address the problem ofdesigning data structures that allow efficient search f or approximate nearest neighbors. More specifically, given a database consisting ofa set ofvectors in some high dimensional Euclidean space, we want to construct a space-efficient data structure that would allow us to search, given a query vector, for the closest or nearly closest vector in the database. We also address this problem when distances are measured by the L1 norm and in the Hamming cube. Significantly improving and extending recent results ofKleinberg, we construct data structures whose size is polynomial in the size ofthe database and search algorithms that run in time nearly linear or nearly quadratic in the dimension. (Depending on the case, the extra factors are polylogarithmic in the size ofthe database.)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.