Abstract

New water-soluble analogues of 1,3,7-trimethyluric acid with N-1 methyl replaced by various groups were prepared and evaluated for their ability to scavenge hydroxyl radicals as well as their protective potential against lipid peroxidation in erythrocyte membranes. The deoxyribose degradation method indicates that all the analogues tested effectively scavenge hydroxyl radicals and some of them show better activity than uric acid and methyluric acids. These effects are shown to be concentration dependent and are more potent at low concentrations (10–50 μM). Among the analogues tested, 1-butenyl-, 1-propargyl- and 1-benzyl-3,7-dimethyluric acids show high hydroxyl radical scavenging property with a reaction rate constant (Ks) of 3.2–6.7 × 10 10 M −1 S −1, 2.3–3.7 × 10 10 M −1 S −1 and 2.4–3.7 × 10 10 M −1 S −1, respectively. The effectiveness of these analogues as hydroxyl radical scavengers appears to be better than mannitol (Ks, 1.9–2.5 × 10 9 M −1 S −1). With the exception of 1-pentyl- and 1-(2′-oxopropyl)-3,7-dimethyluric acids, all other analogues tested are effective inhibitors of tert-butylhydroperoxide-induced lipid peroxidation in human erythrocyte membranes. All the analogues tested are susceptible to peroxidation in the presence of hemoprotein and hydrogen peroxide. The present study has pointed out that it is possible to significantly enhance the antioxidant property of 1,3,7-trimethyluric acid by structural modification at N-1 position. Such compounds may be useful as antioxidants in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.