Abstract
The accuracy and the computational e!ciency of a Point-Collocation Non-Intrusive Polynomial Chaos (NIPC) method applied to stochastic problems with multiple uncertain input variables has been investigated. Two stochastic model problems with multiple uniform random variables were studied to determine the eect of dierent sampling methods (Random, Latin Hypercube, and Hammersley) for the selection of the collocation points. The e ect of the number of collocation points on the accuracy of polynomial chaos expansions were also investigated. The results of the stochastic model problems show that all three sampling methods exhibit a similar performance in terms of the the accuracy and the computational e!ciency of the chaos expansions. It has been observed that using a number of collocation points that is twice more than the minimum number required gives a better approximation to the statistics at each polynomial degree. This improvement can be related to the increase of the accuracy of the polynomial coe!cients due to the use of more information in their calculation. The results of the stochastic model problems also indicate that for problems with multiple random variables, improving the accuracy of polynomial chaos coe!cients in NIPC approaches may reduce the computational expense by achieving the same accuracy level with a lower order polynomial expansion. To demonstrate the application of Point-Collocation NIPC to an aerospace problem with multiple uncertain input variables, a stochastic computational aerodynamics problem which includes the numerical simulation of steady, inviscid, transonic flow over a three-dimensional wing with an uncertain free-stream Mach number and angle of attack has been studied. For this study, a 5 th degree Point-Collocation NIPC expansion obtained with Hammersley sampling was capable of estimating the statistics at an accuracy level of 1000 Latin Hypercube Monte Carlo simulations with a significantly lower computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.